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The Interface Between Theory and Data in 
Structural Equation Models 

By James B. Grace1 and Kenneth A. Bollen2

                                                           
     1 U.S. Geological Survey, National Wetlands Research Center, 700 Cajundome Blvd., Lafayette, LA 70506. 
     2 Department of Sociology, CB 3210 Hamilton Hall, University of North Carolina, Chapel Hill, NC 27599. 

Abstract 

Structural equation modeling (SEM) holds the 
promise of providing natural scientists the capacity to 
evaluate complex multivariate hypotheses about 
ecological systems. Building on its predecessors, path 
analysis and factor analysis, SEM allows for the 
incorporation of both observed and unobserved 
(latent) variables into theoretically based probabilistic 
models. In this paper we discuss the interface 
between theory and data in SEM and the use of an 
additional variable type, the composite, for 
representing general concepts. In simple terms, 
composite variables specify the influences of 
collections of other variables and can be helpful in 
modeling general relationships of the sort commonly 
of interest to ecologists. While long recognized as a 
potentially important element of SEM, composite 
variables have received very limited use, in part 
because of a lack of theoretical consideration, but 
also because of difficulties that arise in parameter 
estimation when using conventional solution 
procedures. In this paper we present a framework for 
discussing composites and demonstrate how the use 
of partially reduced form models can help to 
overcome some of the parameter estimation and 
evaluation problems associated with models 
containing composites. Diagnostic procedures for 
evaluating the most appropriate and effective use of 
composites are illustrated with an example from the 
ecological literature. It is argued that an ability to 
incorporate composite variables into structural 
equation models may be particularly valuable in the 
study of natural systems, where concepts are 
frequently multifaceted and the influences of suites of 
variables are often of interest. 

Introduction 

The application of path analysis to problems in 
the natural sciences has a long history (Wright, 1921, 
1968). Only recently has the capacity for evaluating 
multivariate hypotheses using the more 
comprehensive approach known as structural 
equation modeling (SEM) attracted the interest of 
ecologists (Johnson and others, 1991; Mitchell, 1992; 
Pugesek and Tomer, 1996; Shipley, 2000; Pugesek 
and others, 2003; Grace 2006). At present, there 
appears to be a rapidly growing interest in SEM in 
the natural sciences. Reasons that SEM may prove to 
be of utility to researchers studying natural systems 
include its capacity for representing and testing 
multivariate hypotheses and its flexibility as a 
statistical modeling framework. Several of the recent 
suggestions for how to advance ecological sciences 
given by Belovsky and others (2004), such as a better 
integration of theory and empirical evidence and the 
need to study multiple causes simultaneously, are 
enhanced by SEM. It can be argued that the 
traditional univariate hypothesis testing framework 
limits our ability to study interacting systems and that 
SEM may provide some relief from this limitation. 
Along with the potential utility of SEM, however, are 
certain challenges to matching models to theories.   

A key feature of SEM is the capacity to include 
latent (unobserved) variables along with observed 
ones in models. The development of an appropriate 
structural equation model (SE model) is driven by the 
nature of the theoretical constructs or ideas that 
represent the mechanisms of interest, as well as the 
variables measured and the nature of the data. Often, 
general concepts are represented in SE models by 
using latent variables. In such models, latent 
variables are often used to represent underlying 
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causes, while observed variables represent the effects 
(manifestations) of the latent factors. However, a 
growing body of literature indicates that in many 
cases, constructs are more appropriately modeled in a 
fundamentally different way, with observed variables 
representing a collection of causes rather than 
manifestations of effects. Frequently, when 
constructs and the available indicators (indicators are 
observed variables related to a construct) possess this 
sort of relationship, the constructs are more 
appropriately modeled by using composite variables, 
which differ in their properties and interpretations 
from conventional latent variables.  

As early as 1964, Blalock pointed out that the 
classic representation of latent variables influencing 
their indicators is not always appropriate.  In 
particular, indicator variables might be determinants 
of the construct rather than effects of it.  Blalock 
(1964) referred to the former, classic indicators as 
“effect” indicators since the indicators are effects of 
the latent variable.  The latter indicators are “causal” 
indicators since these indicators are modeled as 
causes instead of effects.  Periodically, practitioners 
of SEM have continued to state the need for careful 
consideration of the best way to represent theoretical 
constructs in models.  Bollen (1984) cautioned that 
effect indicators should have “internal consistency” 
(i.e., they depend on a single entity and, therefore, 
would be expected to be correlated and joint 
responsive) while causal indicators need not.  

A number of authors have continued to discuss 
the specification of constructs in SE models (Bollen 
and Lennox, 1991; MacCallum and Browne, 1993), 
and there has been an increased interest in the subject 
emerging in recent years (Bollen and Ting, 2000; 
Diamantopoulous and Winklhofer, 2001; Edwards, 
2001; Fayers and Hand 2002; Jarvis and others, 2003; 
Williams and others, 2003). This literature has 
provided a number of useful insights, diagnostic 
procedures, and approaches to the question of how to 
treat causal indicators. A related issue is the treatment 
of constructs composed entirely by causal indicators, 
which may invoke the researcher to use composite 
variables to represent relationships. A clear, 
comprehensive, and satisfying treatment of 
composites has just begun to emerge (Grace and 
Bollen in press). In this report we expand on the main 
issues associated with using composites in models 
discussed by Grace and Bollen (in press) and provide 
both diagnostic and solution procedures. Further, we 
use an ecological example to demonstrate how 
composites can be used to represent constructs in SE 
models that match up with general theories. 

Framework and Terminology  

A consideration of the subject of composites 
requires that we have an adequate framework and 
sufficient terminology to express clearly the relevant 
issues. The theoretical background for the analysis 
plays an important part in how we proceed. It is 
typical in SEM applications that the investigators 
wish to evaluate some a priori hypotheses. Indeed, 
one of the dominant features of SEM is its capacity 
for leading to the rejection of multivariate hypotheses 
based on comparisons between data and model 
expectations (e.g., using chi-square goodness of fit 
tests based on likelihood ratios). It is also 
characteristic of SEM practice that the analysis is 
based on evaluating an a priori model rather than a 
null hypothesis. Thus, we expect to give a high 
priority to theoretical knowledge in both the 
processes of constructing and interpreting our SE 
models.  

One way to begin the modeling process is by 
defining the relevant theoretical concepts (also 
known as “constructs”). The meaning that a person 
assigns to a construct is given in its theoretical 
definition. A theoretical definition explains in as 
simple and precise terms as possible the meaning of a 
construct (Bollen, 1989, p. 180), as well as the 
number of distinct components or aspects of the 
construct. The “construct model” represents the 
hypothesized relationships among constructs based 
on known or expected underlying mechanisms. 
Figure 1 provides an overall framework for 
representing the relationships between general 
theories, construct models, and SE models. The 
construct model represents the researchers’ 
theoretical ideas in a form that facilitates the 
construction of the specific SE model(s) by 
expressing the general, expected statistical 
associations. Thus, the construct model can be seen 
as a useful bridge between the abstractions of theory 
and the realities of data modeling. In the development 
of SE models that are meant to relate to general 
theories, there is the need to consider carefully the 
relationships between the available data and the 
constructs of interest. This paper is largely about 
these relationships between construct models and SE 
models and the roles that composite variables might 
play. 

The specification of SE models has typically 
involved the use of both observed and latent 
variables. Here we define a “latent variable” as one 
that represents a factor which we believe to exist and 
be relevant to our analysis but which is unmeasured 
(Bollen, 2002). Latent variables are often used in SE 
models to represent such things as the true value of a 
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The M L block shown in figure 2 represents the 
situation in which manifest variables have causal 
influences on a latent (unmeasured) variable. In this 
case, our figure implies that the latent variable does 
indeed exist independent from our data despite the 
fact that we do not have measures of it. Graphically, 
this property of independent existence for the latent 
variable is represented by the presence of an error 
variance ζ1, which implies that while the xs have 
causal effects on η1, they do not completely 
determine it. 

parameter, an underlying cause, or an important piece 
of missing (unmeasured) information. Latent 
variables play a special role in SEM because they 
represent a kind of bridge between observed data and 
theoretical generalization. As an example of how 
latent variables might be used, if a construct is 
envisioned to have distinct dimensions, then each 
dimension might be represented by a single latent 
variable. In such a case, a two-dimensional construct 
would be represented by two latent variables in the 
SE model.  

“Composites” are another type of variable that 
can be specified in SE models, and they represent 
collections of causes.  Composites can reflect the 
effects of sets of either manifest or latent variables. A 
composite can, thus, be referred to as either a 
“composite of manifest variables” or a “composite of 
latent variables.”3 We also recognize that the issue of 
how to represent a construct deals with the 
interrelations between a latent or composite variable 
and the associated variables that give it meaning. To 
aid our discussion, we define a “block” as the basic 
unit to consider in an SE model and illustrate several 
types of blocks in figures 2 and 3. The reader should 
also be aware that we use the terms “observed” and 
“manifest” interchangeably to refer to the directly 
measured variables. The term “indicator” refers to an 
observed or manifest variable that is linked to either a 
latent or composite variable. 

In contrast to the M L block is the M C block, 
in which we have a composite summarizing the 
collective influences of x1 - x3. Since the error 
variance is specified to be 0 for a composite, this 
condition signifies that it is completely determined by 
its causes. We can distinguish two kinds of 
composites; one is the “fixed composite”. In this 
type, the loadings from causes are specified a priori 
to have particular values by way of definition. An 
ecologically relevant example would be the 
“importance value,” which is defined as the sum of 
the relative density, relative abundance, and relative 
frequency (usually for a species within a 
community). A second type of composite can be 
referred to as a “statistical composite”, which is the 
type considered in this paper. A statistical composite 
represents the collective effects of a set of causes on 
some response variable(s). In simplistic terms, the 
statistical composite is similar to a multiple 
regression predictor and usually represents some 
weighted combination of causal influences that 
maximizes variance explanation in one or more 
response variables (not shown in fig. 2).  

In Figure 2 we see that given a set of three 
manifest variables, x1 - x3, there are various ways 
they can be interpreted (and thus represented) in an 
SE model depending on how the data relate to the 
theoretical construct. The most common 
representation is the L M block, where directed 
paths run from latent to manifest variables. In this 
block type, the latent variable is postulated to cause, 
at least in part, the correlations/covariances among 
the manifest variables. A great deal has been written 
about the properties of L M blocks and they form 
the backbone of latent variable modeling (Bollen, 
1989). Some of the expected properties of blocks of 
this type will be considered later in the paper, along 
with diagnostics that help evaluate whether either 
theory or empirical relations are consistent with this 
representation of a construct. An alternative 
terminology that has been used for this case is to 
refer to a “latent variable with effect indicators.” We 
note that there is a long history of the use of the 
opposing terms “effect indicators” (as in the L M 
block in figure 2 and “causal indicators” (as in the 
M L block in figure 2) and include that usage in our 
discussion.  

Figure 3 presents more complex examples of 
blocks where relationships between latent variables 
are considered. The L L block represents effects of 
latent causes on a latent response, where all latent 
variables have effect indicators. This is another 
standard block type found in models discussed in 
most introductory SEM treatments. What is 
represented by this block structure is that the causal 
mechanisms involve direct relations among latent 
factors and that we can understand the covariances 
among a set of x and y variables based on that 
mechanism. Also implied is that the effect indicators 
associated with each latent variable (e.g., x1 - x3) 
serve as multiple measures for that latent factor. 
Because the flow of causation is from the latent 
factors to the indicators, error terms are used to 
represent how well the indicators are predicted by the 
model, while the latent factors are presumed to be 
free from measurement error.  

                                                           
3 It is even possible to have a composite that is a 
mixture of observed and latent variables.  
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Figure 1.  Overview of the relationships between general theories, construct models, and structural equation models. 
Note that what are referred to here as general theories are sometimes referred to as hypotheses, for example, in the 
case of the "intermediate disturbance hypothesis", or models, as in the "dynamic equilibrium model". Construct 
models refer to hypothesized relations among theoretical constructs and take a form that defines how particular 
structural equation models relate to general theoretical ideas. The structural equation model itself is the specific 
formulation of the equations used to describe relations among the included variables. 
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The L L(no M) block in figure 3 represents 
causal influences from latent variables that have 
effect indicators to a latent variable for which there is 
no effect indicator. This block type resembles the 
M L block in figure 2, except for the fact that latent 
causes replace the manifest ones. Similarly, the L C 
block in figure 3 is analogous to the M C block in 
figure 2. The relevant situations for these 
representations are illustrated in the example 
application below.  

An Ecological Example: 
Colonization of Forest Patches by 
Understory Herbs 

Rather than continue to elaborate on constructs, 
blocks, and composites in the abstract, the remaining 
development of ideas (as well as the development of 
formal notation), will be conducted in the context of 
a specific example (hereafter referred to as Example 
1). The reader should keep in mind that while not 
representing an exhaustive treatment of the subject, 
the example chosen and procedures discussed in 
conjunction are broadly applicable to the general 
issues associated with representing constructs in SE 
models.  

Background 

In a recent paper, Verheyen and others (2003) 
addressed the influences of factors on the ability of 
herbaceous plant species to recolonize forest stands 
in a fragmented landscape. Their work can be viewed 
as an effort to evaluate a dichotomy of preexisting 
theories. On the one hand, island biogeographic 
theory suggests that successful colonization will be 
limited by factors such as the age of an island (in this 
case, a forest stand is analogous to an island) and the 
distance to a source population. On the other hand, 
the local conditions in a forest stand (such as soil 
conditions and the abundance of competitors) are 
frequently believed to be the ultimate limiting factors 
for successful colonization. The relative importance 
of effects is what is of interest in this case. 

In the case of Example 1, Verheyen and others 
(2003) examined colonization success and related it 
to forest stand attributes in a nature reserve in 
Belgium that has had a long history of agricultural 
use and forest fragmentation. In this landscape, much 
of the original forest cover was gradually removed, 
and in places, discrete stands of trees were replanted, 

creating a mosaic of ancient and contemporary 
stands. Land-use history of the 360-ha preserve was 
reconstructed by using maps dating back into the 
1700s and aerial photographs dating back to the 
1940s. Using the historical records, the age of each 
forest stand in the landscape was determined. 
Extensive surveys of forest herb species throughout 
the entire preserve were conducted in 1999, along 
with characterizations of forest understory cover and 
soil conditions in individual stands. Together, the 
sources of data allowed Verheyen and others (2003) 
to estimate the number of colonizations by each herb 
species in contemporary forest stands and the 
distance to the nearest population in the ancient 
stands, which was presumed to be a possible source 
for colonization. A total of 180 forest stands, with 
ages from 1 to 195 years old, were in the final data 
set. All species that were included in the analyses are 
obligate forest understory perennials.  

Verheyen and others’ (2003) initial model of 
constructs and the relations among them are shown in 
figure 4. As represented here, the authors were 
interested in differentiating between the effects of 
two exogenous (external) influences, landscape 
properties and soil conditions, on competitor 
abundance and ultimately colonization success (the 
latter two of which are considered endogenous or 
internal to the model). The authors used a two-stage 
analysis to evaluate the model in figure 4, first 
deriving composite indices, followed by a path 
analysis of relations among constructed indices using 
SEM. Here we wish to provide a more formal 
illustration of how their constructs and the relations 
to associated indicators can be evaluated. We also 
wish to discuss issues related to the solution of SEMs 
containing composites. We use a selective subset of 
the data analyzed by Verheyen and others (2003), and 
our purpose is not to confirm or contradict the 
biological conclusions of the original analysis but 
rather to illustrate statistical methods. Data 
characteristics were considered in this analysis, and 
corrective actions (e.g., transformations) were taken 
where needed, though the particulars are not 
discussed further here.  

In Example 1, our starting point is the initial 
conceptual (construct) model summarizing the core 
theoretical questions posed (fig. 4). We start by 
considering the various ways we might address the 
hypotheses implied by figure 4. To address this, we 
must consider the available indicators and then the 
linkages between indicators and constructs. In this 
study, Verheyen and others (2003) measured eight 
variables in the process of developing indicators for 
the four constructs of interest. Two  
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indicators of landscape conditions were measured, 
the estimated age of each forest stand and the 
distance from each reforested target stand to the 
nearest source patch. Three indicators of soil 
conditions were measured, including soil texture, soil 
moisture, and soil pH. Two indicators of competitor 
abundance were measured, the cover of herbaceous 
competitors and the abundance of understory shrubs. 
For the herb species whose colonization will be 
considered in this example application (Lamium 
galeobdolon), shrub abundance was not significantly 
related to colonization success (though herbaceous 
cover was). So, to simplify our example, we only use 
a single indicator for competitor abundance, which is 
herbaceous cover. The proportion of sampling points 
where a species was found in a forest stand serves as 
the single indicator of colonization success.  

Figure 5 shows which measured indicators are 
associated with particular constructs based on the 
theoretical reasoning of the authors. In this initial 
representation, we make no attempt to express the 
structure of the blocks, therefore, constructs are 
related to observed indicators with nondirectional 
lines rather than directional arrows. Error terms are 
specified for Competitors and Colonization, while the 
diagram is ambiguous as to whether or not Soil and 
Landscape possess error terms because the directions 
of influences are not given. 

Possible Model Structures 

There are several possibilities for how the 
relations in figure 5 might be developed into SE 
models. The primary determining factor for deciding 
which of the possibilities is most appropriate is the 
nature of the causal relations. There are, in fact, a 
great many possibilities that could be considered, 
though here we will only discuss a few key ones of 
contrasting type. One of these possibilities is that the 
most appropriate model is a classic latent variable 
model of the sort shown in figure 6. Here we see that 
the block structure used to represent relations 
between indicators and individual latent variables is 
the L M block type. In this model, which will be 
referred to as Model A, two of the latent variables, 
Competitors and Colonization, are associated with 
one effect indicator each. As appropriate for such 
relationships, arrows are directed from the causes 
(the latent variables) to the indicators. The two other 
latent variables in this model, Soil and Landscape, 
are associated with multiple effect indicators. Causal 
relations are represented among latent variables, and 
direct paths between manifest variables are not 
specified. 

A second possibility is that the multiple 
indicators associated with Soil and Landscape are 
causal indicators. This type of structure is illustrated 
in Model B (fig. 7). Here, the arrows pointing from 
pH, moisture, and texture to Soil represent the 
presumption that the measured soil properties jointly 
determine the soil's influences rather than vice versa. 
A similar logic applies to distance and patch age, 
which are presumed to contribute to Landscape in 
this model. For the sake of simplicity, we assume in 
this case that the composites Soil and Landscape are 
completely defined by their indicators. Thus, the 
multi-indicator blocks are of the M C type, and both 
Soil and Landscape are represented as observed 
composites with zero error variances.  

If we assume that the causal indicators in Model 
B are themselves imperfect measures, which is very 
reasonable in this case, then we might represent the 
situation by using latent variables for the true values 
of pH, moisture, texture, distance, stand age, 
competitors, and colonization. Given the available 
data in this example, each of these latent variables 
would be matched with a single indicator, being the 
observed manifestations of those properties. In this 
paper we will demonstrate the principles of 
composites while using the simpler case where the 
indicators x1 - x5 are assumed to be measured without 
error. It should be understood by the reader that the 
method of composites can be extended to the case 
where latent variables are used to represent the true 
values of all our measured properties. 

Our discussion of the range of possible ways to 
represent the relations in Figure 5 would be 
incomplete without considering another alternative, 
which we will refer to as Model C (fig. 8). In this 
model, our two multidimensional constructs, soil 
conditions and landscape properties, are represented 
simply as groups of variables.  

Formal Representations 

To formalize our discussion of the relationships 
embodied in our models, we present the three 
characteristic equations of the LISREL model 
(Bollen, 1989);  

,    (1) 
 

,    (2) 
and 

,    (3) 
 

where x and y are vectors of observed indicators of 
exogenous (predictor) and endogenous (response)  
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Figure 8.  Model C. A partially reduced form of Model B omitting explicit consideration of collective soil and 
landscape effects. 
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latent variables, ξ and η are vectors containing the 
individual exogenous and endogenous latent 
variables, Λx and Λy are vectors of coefficients 
relating indicators to latent variables, B and Γ are 
coefficient matrices for effects of endogenous and 
exogenous latent variables on endogenous latent 
variables, δ and ε are vectors of measurement errors 
for x and y, and ζ is a vector of errors for the η 
variables. For exogenous latent variables, ξ, their 
variances are represented by the diagonal elements of 
the matrix Φ while the off-diagonal elements of the 
matrix are the covariances. The variances of the error 
terms for the endogenous latent variables (ζ) are 
contained within the diagonal elements of the Ψ 
matrix, while the off-diagonal elements of that matrix 
represent any covariances among errors (normally 
assumed to be zero). Error variables (in δ and ε) are 
expected to be uncorrelated with ξ and η. However, it 
is possible to model correlations among errors, 
typically represented by nonzero off-diagonal 
elements in the matrices representing cross products 
among measurement errors, θδ and θε.   

This notation is sufficiently general that we can 
use it to express the various models with causal 
indicators and composites that we discussed 
previously. We can incorporate the causal indicators 
in a model such as Model B by defining a separate ξ 
variable for each causal indicator and setting its 
factor loading to 1.0 and its error to zero. For 
instance, if x1 to x3 are causal indicators, we would 
have  

 

.    (4) 
as the part of the measurement model that 
corresponds to the causal indicators. This 
representation explicitly shows that we are assuming 
no measurement error in the xs. 

Composites are included by specifying the 
coefficients in Γ that correspond to the variables that 
make-up the composite. So if the causal indicators 
from equation 4 form a composite and η1 is the 
composite, we would estimate or fix the values in the 
first three columns of the first row of Γ to create the 
η1 composite.  

Estimation of Composites 

Previous authors have typically estimated 
composites with nonzero error variances (e.g., 

MacCallum and Browne, 1993). In a sense, such 
composites are actually types of latent variables in 
that they are not fully measured by the data. As a 
practical matter, for such “latent composites” in 
blocks, such as M L and L L(no M), we usually 
have insufficient information to estimate the true 
variance for the latent variables since they do not 
have at least one effect indicator.  In these situations, 
we cannot estimate the model as originally 
formulated and we must look for alternatives. One 
possibility is to replace M L with M C and 
L L(no M) with L C, where C refers to a 
composite variable. In the case of M C, the block 
describes a composite of manifest variables, while in 
the case of L C, the block describes a composite of 
latent variables. Such composites are feasible 
elements of models, being both estimable and 
straightforward to interpret. This contrasts with the 
problematic characteristics of composites having 
non-zero errors (MacCallum and Browne, 1980).   

Composites are, in all cases that we describe, 
considered endogenous (η) variables but they are 
endogenous variables completely determined by the 
variables that influence them. If a composite does not 
fully represent the construct with which it is 
associated, we must recognize that it is an imperfect 
measure of that construct. With regard to the example 
of forest herb colonization, if stand age and distance 
from source constitute the predominant landscape 
features of importance for the model, then a 
composite formed from their effects will have a very 
general meaning. If stand age and distance from 
source are just two of many unique landscape 
properties of importance to herb colonization, our 
composite will simply represent their joint effects and 
will be a poor representation of a general landscape 
effect. Typically, unless an effort has been made to 
sample the many facets of a construct, any composite 
derived from the measures of that construct should be 
understood to represent the collective effects of its 
components, regardless of the label placed on that 
construct. In such a case, an error estimate of zero is 
appropriate. Despite their limitations, composites can 
be useful as a means of representing certain types of 
constructs, facilitating general conclusions, and 
managing model complexity.  
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Evaluating the Different Model 
Possibilities - Theoretical 
Considerations 

Both theoretical information and empirical 
information contribute to an evaluation of the 
suitability of model architecture for a given situation. 
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As stated earlier, there are a great number of 
possibilities for how a set of manifest variables may 
be connected. In the example under consideration 
here involving herb colonization of forest stands, 
initial guidance comes from the theory specified in 
figure 4 and the associations in figure 5. We begin 
our evaluation of the applicability of Models A-C in 
this case by considering the causal relations between 
latent variables and indicators.  

Borrowing, with modification, from Jarvis and 
others (2003), we recognize certain conceptual 
criteria for deciding whether a block should be 
modeled in the traditional L M format (e.g., Model 
A) or whether M C blocks are more appropriate 
(e.g., Model B). Three kinds of questions can be 
considered to gauge the theoretical basis for forming 
models such as Model A versus Model B: (1) What is 
the direction of causality? (2) Are the indicators in a 
single block interchangeable? (3) Is there an 
expectation that indicators in a block should covary 
(e.g., because they are jointly controlled by an 
underlying factor)?  

For the first question, we must begin by asking 
whether Soil has causal influences on pH, moisture, 
and texture. In other words, we are asking whether 
the variation among stands in soil conditions is such 
that pH, moisture, and texture are controlled by a 
common difference among soils. In such a case, we 
view that causation flows from the general construct 
to the indicators. Alternatively, if it is the case that 
pH, moisture, and texture behave independently from 
one another, then causation flows from the indicators 
to the latent variable. In this study, Verheyen and 
others (2003) felt that causation flows from the 
indicators and could be represented by a M C block. 
A similar determination was made for the latent 
variable Landscape which is envisioned by the 
authors to be the result of largely distinct influences 
by certain landscape properties.  

The second question to be considered is whether 
the indicators in a block are interchangeable; if so, 
then they constitute redundant measures and are 
likely to represent effect indicators consistent with a 
L M block. Stated in another way, we might ask if 
dropping one of the indicators in a block alters the 
meaning of the construct. For both Soil and 
Landscape, the indicators in the separate blocks 
would seem to be unique based on the Verheyen and 
others’ (2003) model specification. For the construct 
Landscape, an M C block specification would 
appear to be indicated based on this criterion. The 
age of a patch is conceptually quite distinct from its 
distance from a source population. If data for the 
distance to source populations was absent, the 
construct would reduce to solely an age dimension. 
For Soil, there are precedents for specifying common 

soil factors of the L M type (Grace, 2003; Weiher 
and others, 2004). In this case, Verheyen and others 
(2003) felt that the individual indicators (pH, texture, 
and moisture) reflect separate dimensions of Soil and 
are best represented by an M C block structure. 

The third question is whether the indicators are 
expected to covary. Addressing this question serves 
as an additional way of evaluating the flow of 
causation in a block. If indicators are under common 
causal control by a latent factor, then when that latent 
factor varies, the indicators should all likewise vary. 
Such a situation would imply that an L M block 
would be an appropriate means of modeling the 
situation. On the other hand, if causation flows from 
the indicators to the latent variable, there is no basis 
for expecting correlations among indicators since 
their causes are not specified. We should, therefore, 
recognize that a correlation among indicators does 
not inform us as to the direction of causal flow, 
though a lack of correlation among indicators would 
contraindicate the prospect that a block should be of 
the L M form. For the herb colonization example, 
Verheyen and others’ (2003) presentation did not 
produce any expectations of whether indicators in 
multi-indicator blocks would correlate or not. So, 
again, by this criteria, it would seem that Soil and 
Landscape are constructs best represented as M C 
blocks given the available indicators. 

Collectively, it would seem that the expectations 
of Verheyen and others (2003) as reflected by the 
three questions would lean towards a specification of 
the multi-indicator blocks as M C for both Soil and 
Landscape. This assessment does not guarantee that 
this is the correct causal structure nor does it override 
the possibility that empirical characteristics of the 
data might imply a different block structure. What is 
most important to realize is that there are logical tests 
for developing, justifying, and interpreting block 
structure and that automatically presuming a 
conventional model structure (L M) is not justified. 
Neither is it advisable to simply rely on data 
properties to make the determination as to whether a 
construct is best represented by a particular structure. 

Evaluating the Different Model 
Possibilities - Empirical Evaluations of 
Blocks 

It is often not known with absolute confidence 
what the causal flow is for a set of manifest variables. 
This condition is especially common for applications 
in the natural sciences where latent variables are only 
beginning to receive attention. In SEM practice, 
logical and statistical approaches to evaluating the 
appropriateness of model structure exist (see 
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numerous illustrations in Bollen, 1989). We will 
address overall model fit later. For now, our 
considerations relate to the empirical characteristics 
of individual blocks. Ultimately these are of great 
importance, for no matter what logic one brings to a 
model, if the indicators in a block do not behave like 
effect indicators, then it will be unprofitable to model 
them as such. Reviews of SEM studies in certain 
disciplines (e.g., Jarvis and others, 2003) suggest that 
researchers commonly misjudge the empirical 
support for the causal direction specified in their 
models. The greatest culprit is the assumption that 
blocks are of the L M form without seriously 
considering the use of M L and L L(no M) blocks 
(or M C and L C). In the example being discussed 
here, Verheyen and others (2003) assumed the form 
(M C) for their multi-indicator blocks. It seems, 
however, that the logical justification for this 
assumption is stronger for the Landscape construct 
and less definitive for the Soil construct. In this 
section, we consider some of the empirical properties 
that inform us as to whether either block has 
properties consistent with L M form.  

Table 1 presents correlations for colonization 
frequency and other manifest variables (note that the 
covariances, the basis for SEM analysis, can be 
reconstructed from the  correlations and standard 
deviations) for the species Lamium galeobdolon. As 
Bollen and Ting (2000) have described, there is an 
expectation that a set of effect indicators associated 
with a single latent variable in a L M block will be 
correlated, as implied by equation 1. For such a set of 
indicators, their degree of correlation will depend on 
the strength of the common influence of the latent 
cause relative to their total variances. So, for Model 
A, we would expect conspicuous correlations among 
soil pH, moisture, and texture because of the joint 
influence of Soil on those specific factors. We would 
have similar expectations for a strong correlation 
between distance and patch age. Again, the degree of 
correlation expected would depend on the relative 
importance of the individual errors for each indicator, 
though for a reliable set of indicators, correlations 
should be at least moderately high. In contrast, for a 
set of causal indicators associated with a single latent 
variable in a single M C block, there is no basis for 
expecting any particular correlation pattern. None of 
the equations that apply to Model B imply common 
causal influence on sets of causal indicators. So, a set 
of causal indicators either may or may not 
intercorrelate in such a case, since our equations do 
not describe their interrelationships, except that they 
are classified as being of common interest. 

Inspection of table 1 reveals a correlation of 
moderate magnitude between age and distance of  

-0.5934. In addition, the correlations between these 
variables and the other variables in the model are 
approximately of the same magnitude. Thus, based 
on a crude inspection of correlations in the matrix, 
we are unable to rule out the possibility that either a 
L M or M C block structure would be consistent 
with the empirical characteristics of the indicators 
related to Landscape.  

The correlations between pH, moisture, and 
texture are 0.0265, 0.1324, and 0.5767 respectively. 
The low magnitude of correlations between pH and 
the other indicators in the block suggests that these 
three soil properties would not be likely to represent 
redundant measures of the sort normally found in 
L M blocks. A method for formally evaluating 
causal versus effect indicators has been proposed by 
Bollen and Ting (2000) based on a simultaneous 
analysis of vanishing tetrads in models.4 
Correlations/covariances among a set of truly 
redundant indicators in a L M block should possess 
the mathematical property of vanishing tetrads, with 
a tetrad being the difference between the products of 
pairs of covariances among four random variables. It 
can be said in this case that the pattern of correlations 
among pH, moisture, and texture does not appear to 
be consistent with such a block structure. To increase 
our confidence in this assessment, we applied Bollen 
and Ting’s (2000) vanishing tetrad test to more 
formally compare Model A to Model B. Models B 
and C do not imply any vanishing tetrads whereas 
Model A does. We used the SAS macro for vanishing 
tetrads provided in Hipp and others (2005) and found 
that the fit of Model A is significantly worse than is 
the fit of Model B or C (p < 0.05).  

Comparing Results for Different Models 

Results for Model A 

The data presented in table 1 are sufficient to 
provide for an evaluation of all models discussed in 
this paper. Analyses were conducted by using the 
program Mplus (Muthén and Muthén, 2004). We 
used maximum likelihood estimation in all analyses. 
For the purposes of this illustration, we assume a 
modest, nonzero degree of measurement error for the 
                                                           
4 Spirtes and others, 1993 have done important work 
in exploratory tetrad analysis, providing methods that 
can help to generate plausible model structures for a 
data set. Here we are interested in confirmatory tetrad 
analysis where we are testing specific hypotheses by 
using a simultaneous test statistic developed in 
Bollen (1990). 
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single-indicator measures (cover and colonization 
frequency) of 10 %.  

The specification of a nonzero percentage of 
measurement error deserves discussion. Here we 
specify 10 % measurement error primarily to 
illustrate a common use for single-indicator latent 
variables. It is widely recognized among statisticians 
that the assumption of perfect measurement (zero 
measurement error) is frequently unjustified and a 
common source of bias for model parameters. In 
SEM practice, there exist both a readily available 
means of adjusting for known measurement error (the 
specification of measurement error estimates using 
latent variables) and a tendency to make such 
adjustments. When single-indicator latent variables 
are specified, one must specify the most reasonable 
estimate for the degree of measurement error. Often, 
though not always, this is some nonzero percent of 
observed variance. It is best if this estimate comes 
from empirical evidence, such as from replicate 
samples or a calibration data set. However, 
sometimes an estimate is made based on subjective 
reasoning, which, although approximate, is viewed as 
less arbitrary than assuming zero error and likely to 
produce a lower degree of bias in parameters than 
achieved from a zero error estimate. We should say 
that the specification of measurement error in this 
example is not a requirement for the use of 
composites, nor does it play a major role in our 
presentation. That said, those who choose to specify 
nonzero measurement error in SE models should be 
aware of the impacts on model results and their 
stability (Bollen 1989).  

The fitting of data to Model A (fig. 6) resulted in 
poor fit based on model chi-square statistics, error 
variances for indicators, and examination of the 
residual covariance matrix. A chi-square of 45.20 
was obtained for the model, with 10 degrees of 
freedom. The associated probability of good fit 
between data and model was found to be less than 
0.00005. Note that since Model A is saturated with 
regard to the structural model (i.e., all paths between 
latent variables are estimated), the inflated chi-square 
does not result from unspecified relations among 
latent variables but instead resides in the 
measurement model. In other words, in this example 
the lack of model fit can be attributed to 
inappropriate relations between latent and manifest 
variables. Standardized parameter estimates (for 
alternatives to the use of conventionally standardized 
parameters, see Grace and Bollen, 2005) for Model A 
are shown in figure 9. Here it can be seen that the 
standardized error variance for pH is 0.99, indicating 
that the model provides no explanation of the 
variance of this variable. Finally, residuals indicate 

that in general, the model does a poor job of 
resolving the covariances among indicators.  

A modification of Model A was evaluated to 
determine the degree to which the lack of fit for pH 
contributed to poor model fit. In this modified model, 
only moisture and texture were used as indicators for 
Soil, while pH was specified to be a single indicator 
for an additional exogenous latent variable, True pH. 
Again, 10 % of the variance of observed pH was 
specified as being measurement error. A chi-square 
of 34.57 with 7 degrees of freedom was obtained for 
this model. The associated probability of good fit 
remained less than 0.00005. Thus, this result 
indicates that the observed lack of fit between model 
and data is spread throughout the measurement model 
and not solely due to a lack of correlation between 
pH and the other soil variables.  

A Digression on Parameter Identification 
in Models with Composites 

It is essential that we consider certain 
complications associated with the estimation of 
models containing composites if we are to overcome 
some of the limitations inherent in earlier 
presentations. These complications have specifically 
to do with being able to avoid problems of model 
underidentification. Model B (fig. 7), because it 
includes composite variables, has a somewhat 
different set of parameters that must be estimated 
compared to a similar model without composites 
(e.g., Model C, fig. 8). As mentioned earlier, since 
composites are defined by having zero error 
variances, the identification of the error variances for 
composites is not an issue. For Model B, associated 
with the composite variables are four paths that 
represent the effects of the composites on the latent 
variables. In this particular case, the relationships 
between the exogenous manifest variables (xs) and 
the composites, •1 and •2, are reduced to single 
effects to each composite from each x. So, for our 
example, the 10 potential paths from the individual x 
variables to Competitors and Colonization in Model 
C are replaced in Model B with 5 paths from the x 
variables to the two composites plus 4 paths from the 
composites to Competitors and Colonization. Despite 
the net gain in degrees of freedom from this 
substitution, problems remain with parameter 
identification. Ultimately, there is a general problem 
that arises when attempting to identify all paths 
leading to, as well as flowing out from, a composite. 
This problem is similar to the routinely encountered 
problem associated with latent variables with effect 
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Table 1.  Correlations among variables and the standard deviations. "col. freq" refers to colonization frequency. 

 col. freq. distance age texture moisture pH cover 

col. freq. 1.0       

distance -0.5785 1.0      

age 0.6424 -0.5934 1.0     

texture -0.2553 0.1844 -0.3146 1.0    

moisture -0.3369 0.4604 -0.3462 0.5767 1.0   

pH -0.0073 -0.0465 -0.0976 0.1324 0.0265 1.0  

cover -0.3423 0.2070 -0.4062 0.3189 0.2952 0.2394 1.0 

        

std. dev. 0.1867 0.8207 0.3390 0.4588 1.1359 0.7507 0.3017 
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Figure 9.  Standardized parameter estimates for Model A. Chi-square for model fit was 45.20 with 10 degrees of 
freedom  (sample size = 180) and a p-value < 0.00005, indicating very poor fit of data to model expectations. 
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Figure 10.  Standardized parameter estimates for Model B. Model chi-square was 6.888 with 3 degrees of freedom 
(p = 0.075).   
 

 18



indicators where the scale of the latent variable needs 
to be established. Both of these problems can be 
solved in the same fashion, by specifying a single 
incoming or outgoing relationship so as to establish 
the scale of measurement.  

Despite the fact that parameter identification 
issues can be resolved by specification of select 
parameters, an issue still remains as to the statistical 
significance of the specified pathways. In Model B 
(fig. 7), we set the unstandardized coefficients for the 
paths from pH to Soil and from distance to 
Landscape to 1.0 to establish the scale of 
measurement for the composites (note that this is not 
shown in later results because only the standardized 
parameters are presented). This procedure ignores the 
question of whether the parameter values for these 
paths are detectably different from zero; specifically, 
does pH have a significant (nonzero) contribution to 
Soil, and similarly, does distance have a nonzero 
contribution to Landscape? One approach to 
evaluating fixed paths from xs to composites is to use 
a reduced form model such as Model C (fig. 8), in 
which the composites are omitted and the direct 
effects of xs on Competitors and Colonization are 
tested. For our example, the reduced form equations 
that apply to Figure 8 are 

 

15154143132121111 ζxxxxxη +++++= γγγγγ   
(5) 

 
and 

 
+++++= 5254243232221212 xxxxxη γγγγγ  

 

2121 ζ+ηβ           (6). 
 

For models with more than a single path flowing 
out from the composites, as is the case in Model B, 
an evaluation of Model C only provides an 
approximate answer to the question of whether the 
parameters in Model B are significant. The reason the 
reason is only approximate is because the gammas 
relating xs to Competitors must be proportional to 
those relating the same xs to Colonization. In other 
words, it is assumed that the weightings specifying 
the contributions of pH, moisture, and texture to a 
composite of their effects on Competitors are the 
same as the weightings for the effects of those same 
variables on Colonization. This means that for the 
reduced form equations (5 and 6), •11 - •15 should be 
proportional to •21 - •25. Otherwise, a single 
coefficient will not, for example, adequately 
represent the paths from •1 to •3 and •4, in Model B 
(fig. 7). As we show below, it is important to evaluate 
such relations as part of the assessment process.  

Further Results 

Results for Model B 

Maximum likelihood estimation yielded a chi-
square of 6.888 with 3 degrees of freedom and an 
associated probability of 0.075. Examination of 
residuals and the chi-square results indicate adequate 
fit of the data to Model B, though there were some 
slight indications of residual relations between 
distance and stand age and •3 and •4. In the 
presentation of results in figure 10, all numerical 
estimates shown are associated with significant p 
values for the relevant unstandardized parameters, 
except for the paths from pH to Soil and distance to 
Landscape, which were set to fixed values to 
establish the scales for the composites.  

Conspicuous in the results for Model B (fig. 10) 
is that neither moisture nor texture contributed 
significantly to the composite variable Soil. Also, 
Soil had a significant effect on Competitors but not 
on Colonization. In contrast, the relationship between 
stand age and Landscape was significant, as were 
both paths from Landscape to Competitors and 
Colonization. Examination of the residual variances 
for Competitors and Colonization shows that 25 % 
and 54 % of the variance in these response variables 
were explained (R2

 = 1 - the standardized error 
variance). 

Results for Model C  

It is instructive to evaluate Model C, which 
effectively represents what Bollen and Davis (1994) 
referred to as a “partially reduced form” of Model B 
in which composites are omitted. In Model C, 
separate effects of the x variables on Competitors and 
Colonization are estimated, and the individual x 
variables are associated with constructs nominally. 
Since this model is saturated, maximum likelihood 
estimation yields a chi-square of 0 due to the fact that 
there are no degrees of freedom. In a side analysis, 
the stability of results was tested by deleting 
nonsignificant paths, yielding a chi-square of 9.773 
with 6 degrees of freedom (p = 0.1344). This side 
analysis indicated that the results for Model C are 
stable.  

Results for Model C (fig. 11) show that only four 
of the paths from x variables to Competitors and 
Colonization were significant. Variances explained 
for Competitors and Colonization in the saturated 
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model were 30 % and 57 % respectively. Again, for 
the purpose of comparing among models, the 
saturated model results will be used even though 
nonsignificant paths are included. Aside from 
providing us with a comparison to Model B, Model C 
also provides a representation of our constructs from 
figure 4, except that in this case, the dimensions of 
soil conditions and landscape properties are 
represented separately.  

A Further Model to Consider – Model D 

Above it was mentioned that Model B presumes 
a single set of coefficients defines composite effects 
on more than one response variable. This is akin to 
saying that the slopes of the regression relations of xs 
on •3 would be proportional to the effects of xs on •4. 
If this condition holds, then Model B is our best 
model for the situation. On the other hand, if this 
condition does not hold because relations are not 
proportional, our model will underestimate the 
variance explanation for Competitors and 
Colonization. It can be easily seen that, when 
gammas in equations 5 and 6 are not proportional, the 
composites in Model B will be insufficiently relevant 
to accurately predict both Competitors and 
Colonization accurately. To evaluate this possibility, 
we consider one additional model, Model D (fig. 12). 
In this model, separate composites are derived to 
estimate effects on Competitors and Colonization. 
Results for Model D were as for Model C in that 
when all paths are included there are no degrees of 
freedom for testing model fit. However, deletion of 
nonsignificant paths allowed for model testing, and 
again, no unspecified paths were indicated.  

Comparisons Among Models 

The exercise of comparing different models as 
contrasting representations of the construct relations 
in Figure 4 is meant not only to illustrate some of the 
variety of modeling possibilities but also to introduce 
a number of important concepts and procedures. 
Most of the presentations of SEM in introductory 
textbooks would likely lead beginning users to 
consider Model A to represent the construct relations 
in figure 4. In fact, several review papers have 
suggested that researchers frequently fail to consider 
the full range of possibilities for model development 
(Jarvis and others, 2003; Williams and others, 2003). 
Models that contain causal indicators and composites 
are rather rare compared to those in which constructs 
are exclusively represented by effect indicators in 
L M blocks. In Example 1, the bulk of the 

theoretical information and the great majority of the 
empirical analyses indicate that Model A is not an 
appropriate representation of the situation. 
Conceptually, the constructs were not envisioned as 
unidimensional underlying causes but rather, as 
collections of influencing factors. Further, the 
available indicators do not represent a suite of effect 
indicators as would be appropriate for an L M 
block. The inadequacy of fit of data to Model A is 
clearly indicated by the very low probability 
associated with the chi-square test. Thus, we can 
reject this model as inadequate. Considerations of 
modifications such as splitting out pH from the Soil 
block, as well as other attempts at small 
modifications, did not lead to the discovery of an 
adequate model akin to Model A either. 

The remaining comparisons of most interest are 
those between Models B, C, and D. All three of these 
models had adequate fit to the data, and the 
differences among them can be viewed as tradeoffs 
between model generality and model accuracy 
(Levins 1968). Model B is the most conceptually 
general of the three (though it is more statistically 
restrictive), representing the collective effects of soil 
conditions and landscape properties with a single 
composite for each. As described in the above 
discussion, for Model B to be appropriate, the 
composites estimated would need to be near optimal 
for representing effects on both Competitors and 
Colonization simultaneously. At the other end of the 
spectrum, Model C is the most accurate and least 
conceptually general of the three models.  

Compared to Model C, which has no composites, 
Model D represents an advance in generality, having 
an individual composite for each effect of the 
multidimensional constructs. As would be expected 
for such a case, the error variances for Competitors 
and Colonization are virtually identical for Models C 
and D. Thus, Models C and D are both equally 
accurate with regard to variance explanation, but they 
differ in the ways in which effects are represented. 
Overall, Model C provides a more succinct 
representation of the individual effects of x variables 
on Competitors and Colonization. All paths are tested 
for significance, and coefficients are readily 
interpretable as individual effects. In comparison, 
Model D provides a superior representation of 
collective effects, with single path coefficients 
representing the effects of suites of variables.  

An important comparison to make between 
Models B and D has to do with the magnitudes of the 
error variances for the response variables. It has been 
recognized previously that, when composites with 
multiple effects on other variables are not 
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Figure 11.  Select standardized parameter estimates for Model C. Here composites are omitted, thus, Model C 
represents a partially reduced form of Model B. 
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appropriate, there is a conspicuous loss of variance 
explanation for the response variables. In this case, 
error variances are 0.75 and 0.46 for Competitors and 
Colonization, respectively, in Model B. In contrast, in 
Model D, the values are 0.72 and 0.46. A test of the 
adequacy of Model B is whether its error variances 
are significantly greater than those for the less 
general case where composites have single effects. 
For such a test, the t-value for a test of difference 
between the error variances for Competitors must be 
obtained. For Model B, the unstandardized residual 
variance for Competitors is 0.059 + 0.007 (standard 
error), while for Model D the value is 0.057 + 0.007, 
yielding a t-value of 0.14 and an associated 
probability of no difference approaching 0.9. For 
Colonization, residual error variances were virtually 
identical (0.013 + 0.002) for Models B and D. Thus, 
there is no indication that Model D is superior to 
Model B in variance explanation for the response 
variables. Further, the paths from composites to the 
response variables are also very similar between 
models. Collectively, this evidence supports the 
conclusion that Model B is superior to Model D 
overall because of its greater conceptual generality 
and that Model B is our best model (of those 
examined) for this example and these data.  

Composites in More Complex 
Situations 

In the example above, only the exogenous 
observed variables were related to composites. 
Situations can exist where endogenous constructs are 
best represented by composites. In this case, all the 
above material applies, but there are some additional 
complications to model structure that apply. An 
example of the evaluation of such a case is given in 
this section, dealing with the associations between 
anuran species richness and habitat conditions. In this 
example, it can be seen that the principles presented 
here can be readily extended to include a broader 
range of model types than the one considered above. 

Example Involving Endogenous 
and Exogenous Composites: 
Examination of Habitat 
Associations for Anurans 

Background 

Anurans are a group of amphibians, comprising 
frogs and toads, that are of high conservation concern 
because of worldwide population declines. Example 
2 uses data from a study by Lichtenberg and others 
(2006) in which 25 wetlands in the lower Mississippi 
River alluvial valley were examined for chorusing 
anuran species and associated habitat characteristics. 
One major goal of this study was to understand the 
habitat characteristics associated with diversity 
“hotspots,” places where a variety of species are 
abundant. Figure 13 provides an illustration of the 
construct relations of interest in Example 2. Stated in 
general terms, the goal of their analysis of anuran 
diversity was to understand the degree to which it 
depends on the type of habitat (lake, impoundment, 
etc.) versus the particular conditions (vegetation, 
litter, etc.) within that habitat. Specifically, the 
investigators were interested in the question of 
whether correlations between high diversity and 
particular wetland types can be explained by the 
microhabitat conditions within the wetlands. Such 
information could prove useful in making decisions 
about types of habitats to protect and the conditions 
to maintain.  

In the study by Lichtenberg and others (2006), 
several types of wetlands were examined. These 
could be classified as being of one of four types – 
lakes, impoundments, swales, and riverine areas. 
Specific microhabitat conditions were assessed at 
each site, and these included a number of vegetation 
and topographic features. Anuran diversity was 
assessed by using nighttime surveys of chorusing 
individuals during several seasons of the year. 
Chorus surveys during the year were used to produce 
an estimate of the species using a site.  

While macrohabitat types were clearly defined a 
priori, microhabitat conditions were sampled in a 
more exploratory fashion. A wide range of 
characteristics of the vegetation, including 
herbaceous cover, vegetation density at different 
vertical positions, woody cover, tree heights, canopy 
cover, as well as litter cover and depth (by type) were 
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measured. Also measured were hydrologic features at 
the site, including the area of open water and the 
mean and maximum water depths.  

Example 1 provided a detailed consideration of 
how constructs may be represented and both 
theoretical and empirical criteria for arriving at 
decisions about block structure. In Example 2, our 
emphasis is more on the question of how to model a 
situation where an endogenous variable (microhabitat 
conditions) has multiple indicators and may involve 
composites. This question was not addressed in 
Example 1, where multiple indicators existed only for 
the exogenous constructs.  

In this second example, we begin our analysis 
with the construct labeled Macrohabitat Type. Since 
our measure is nominal and multilevel (whether a site 
is classified as lake, impoundment, swale, or 
riverine), it immediately suggests the need to model 
this construct by using a set of dummy variables 
representing the possible macrohabitat types. We 
assume for the sake of simplicity that the 
classification of individual sites as to habitat type was 
correct. Therefore, our presumption is that the 
construct Macrohabitat Type can be modeled by 
using the M C block type. 

The construct labeled Microhabitat Conditions is 
one where the specific details of how the measured 
variables are related was not known a priori. For this 
reason, Lichtenberg and others (unpub. data) 
performed an exploratory factor analysis to see if the 
correlations among the many measured variables 
might suggest the operation of a smaller number of 
latent factors. Here we will not go into the details of 
that analysis but only say that the result was the 
recognition by the authors of two factors of 
importance to anuran diversity, the abundance of 
herbaceous vegetation and the abundance of leaf 
litter. Based on the conceptualization of Microhabitat 
Conditions by Lichtenberg and others (2006), it is 
clear that the indicators could represent a collection 
of factors that affect anurans based on theoretical 
grounds. Thus, we begin with the expectation of a 
block structure of L C, with two latent variables, 
Herbaceous Vegetation and Litter, contributing to the 
construct. A total of seven indicators of the two latent 
variables were included in their final model (see 
below). 

Lichtenberg and others (2006) discuss certain 
issues of measurement regarding the construct 
Anuran Diversity. It is widely held that there are 
several causes of measurement error for wildlife 
populations and communities. In addition to the usual 
matter of sampling, varying detectability can 
contribute to error. Lichtenberg and others (2006) 
addressed the issue of detectability to some degree by 

using the total number of species recorded across 
samplings instead of the mean. Nonetheless, error in 
assessing the true number of species at each site is 
likely significant and, while no estimate of this error 
exists, we again use an arbitrary estimate of 10 % of 
the total variance.  

Possible Model Structures 

In the first example we spent some time 
discussing and illustrating criteria for evaluating the 
cause and effect relations among variables and how 
these influence model structure. In this second 
example, we forego a detailed discussion of such 
considerations and, instead, focus on the possible 
ways to model a case where composites have 
directional effects on other composites.  

A model that logically follows from the 
construct relations in figure 13 is shown in figure 14. 
We refer to this model as Model E to avoid confusion 
with the models discussed in conjunction with the 
first example. Based on the information presented 
above, we represent Macrohabitat by using the block 
structure M C. The Microhabitat construct is 
represented in this case as an L C block containing 
two latent variables, both with multiple indicators. 
Diversity is represented by an L M block with a 
single indicator. Consistent with their declarations as 
composites, the error variances for Macrohabitat and 
Microhabitat are set to zero. 

Of the models we consider here, Model E 
represents the one that is most abstract. At the same 
time, Model E is based on the greatest number of 
assumptions. It is presumed in this model that the 
influences of Macrohabitat (•1) on Microhabitat (•2) 
can be summarized by a single coefficient, •21, 
despite the fact that •2 is actually a composite of 
latent effect of Herbaceous and Litter effects on 
Diversity rather than the microhabitat conditions 
themselves. Stated in other terms, in Model E the 
covariances between x1 - x3 and y1 - y7 must be 
resolved by their joint relations to a linear predictor 
that depends on •3. These are fairly critical 
assumptions in that their failure likely means an 
underestimate of Macrohabitat effects on 
Microhabitat and possibly unresolved covariances 
among manifest variables. 

An alternative formulation that is perhaps more 
biologically meaningful, Model F (fig. 15), represents 
the modeling implications of relaxing the 
assumptions just discussed for Model E. Here we are 
allowed to consider effects of Macrohabitat on the 
two dimensions of Microhabitat, Herbaceous and 
Litter. Since these two dimensions are independently  
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Figure 13.  Construct model relating macrohabitat type and microhabitat conditions to anuran diversity. 
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Figure 14.  Model E, which shows one of the possible ways that indicators could be related to the construct model 
shown in Figure 13. Note that by omission, the riverine macrohabitat condition represents the baseline against which 
other macrohabitats are compared. “rich” refers to number of anurans at a site, “imp” refers to impoundments, 
“vhit2” and “vhit1” are measures of vegetation density, “herbl” and “herbc” are measures of dead and live 
herbaceous vegetation, “wlitr” is woody litter, “litrd” is litter depth, and “litc” is litter cover.  
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Figure 15.  Model F, which differs from Model E by allowing separate coefficients (represented by separate paths) 
to convey the effects of Macrohabitat on the Herbaceous and Litter dimensions of Microhabitat (see caption for fig. 
14 for abbreviations). 
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Figure 16.  Model G, which differs from Model F by using separate composites (•1 - •3) to convey the effects of 
individual Macrohabitat types on •4, •5, and •7 (see caption for fig. 14 for abbreviations). 
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Figure 17.  Model H, partially reduced form model representing effects of Macrohabitat and Microhabitat nominally 
through grouping variables (see caption for fig. 15 for abbreviations). 
 
 
Table 2.  Correlations among variables related to anuran richness and their standard deviations. “rich” refers to 
number of anurans at a site, “imp” refers to impoundments, “vhit2” and “vhit1” are measures of vegetation density, 
“herbl” and “herbc” are measures of dead and live herbaceous vegetation, “wlitr” is woody litter, “litrd” is litter 
depth, and “litc” is litter cover. "sd" refers to standard deviation. 
 
 rich lake imp swale vhit2 vhit1 herbl herbc wlitr litrd litrc 
rich 1.0           
lake .696 1.0          
imp -.167 -.355 1.0         
swale -.431 -.659 -.253 1.0        
vhit2 .372 .167 .111 -.099 1.0       
vhit1 .222 -.156 .552 -.118 .653 1.0      
herbl .060 -.252 .562 -.009 .581 .825 1.0     
herbc .091 -.087 .419 -.132 .437 .745 .756 1.0    
wlitr .509 .430 -.284 -.099 -.051 -.290 -.395 -.396 1.0   
litrd .238 .146 -.433 .383 .027 -.097 -.180 -.281 .419 1.0  
litrc .219 .194 -.442 .273 -.118 -.414 -.509 -.580 .568 .762 1.0 
            
sd 2.170 0.510 0.332 0.476 0.512 1.482 0.173 0.122 0.100 0.122 0.148 
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estimated in L M blocks, the interpretative meaning 
of the paths from Macrohabitat to each dimension is 
clear and also independent of other relationships in 
the model. In contrast, since the composite 
Microhabitat is defined as a linear predictor of 
Diversity, it depends on the covariances between 
three latent variables, •2, •3, and •5. If any of the 
covariances among these variables changes, the 
meaning of •4 changes and, thus, the meaning of a 
direct path from Macrohabitat to Microhabitat (as in 
Model E). In Model F, the effect of Macrohabitat on 
Microhabitat can be summarized by calculating the 
total effect of •1 on •4 , which can be summarized by 
the equation 

 

4331422141 βββββ ∗+∗= ,  (7) 
 

where •41 now refers to a calculated total effect. 
 Certain restrictive assumptions that warrant 

discussion remain in Model F. In particular, implied 
is the assumption that a single combination of 
coefficients from macrohabitat types (x1 - x3) to the 
Macrohabitat composite (•1) simultaneously 
summarizes the individual effects of x1 - x3 on •2, •3, 
and •5. We feel that it is always wise to check such 
an assumption (as was done in Example 1). Here, this 
assumption is explicitly removed in Model G (fig. 
16), where one composite representing Macrohabitat 
effects is replaced by three (Macro Herb, 
Macro Lit, Macro Div).  

Also as was done in Example 1, we offer for 
comparison a partially reduced form model, Model H 
(fig. 17), in which composites are omitted and 
constructs are represented nominally. While Model H 
offers a less complete modeling of the construct 
relations (e.g., there are no path coefficients derived 
for interactions among the major constructs), it 
permits a complete evaluation of the significance of 
all individual effects, thus complementing the other 
models.  

Comparisons Among Models 

Sample correlations and standard deviations are 
presented in table 2 for the manifest variables 
considered in this example. As stated earlier, we 
forego an empirical evaluation of the relations 
between manifest variables and either composites or 
latent variables. We also bypass any discussion of the 
bivariate relations in Table 2 and move directly into a 
consideration of model results. 

 As was brought out in our discussion of 
Example 1, the solution and evaluation of general 
models containing composite variables often depend 

on information from more specific models. For this 
reason, we will begin with the model containing the 
least number of assumptions (and thereby, our least 
general model), Model H. We then will proceed 
progressively through models G, F, and E to 
determine whether more general models result in a 
substantial loss of information.  

Results for Model H  

The results for Model H are given in figure 18. 
For the purposes of this evaluation (and in contrast to 
our practice in Example 1), nonsignificant effects of 
macrohabitat types on endogenous variables were 
dropped from the final model. Despite the small 
sample size, results were stable, and the fit between 
model expectations and data was acceptable. As these 
results show, impoundments had significantly higher 
levels of herbaceous vegetation than did other 
macrohabitat types. Litter accumulation, in contrast, 
was substantially higher in lakes and swales than in 
impoundments and riverine habitats (recall that the 
riverine variable was omitted and, therefore, serves as 
the baseline condition). Anuran diversity was found 
to be higher in lakes than in all other habitat types.  

Results for Model G  

Model G provides for a single path from each 
composite to replace the multiple paths that would 
otherwise connect one construct with another. Aside 
from that, the models are very similar. Results from 
the estimation of Model G are presented in Figure 19. 
A comparison of results from Models H and G show 
numerous similarities, as well as a few differences. 
Model fit parameters are identical for the two models. 
Also, variance explanation for endogenous latent 
variables is the same, with R2

s of 0.33, 0.39, and 0.78 
for •4, •5, and •7, respectively. Loadings in L M 
blocks are the same for both models, as are outward 
paths from composites possessing single causes (•1 

 •7 and •3  •4) in comparison to the equivalent 
effects in Model H (x1  •3 and x2  •1). 
Composites with multiple causes in Model G yielded 
parameters not found in Model H, such as those 
associated with •6  •7 (Microhabitat to Diversity) 
and •2  •5 (Macro Lit to Litter). The path 
coefficients associated with these paths represent 
standardized collective effects of the composites’ 
causes on the response variables involved. Heise 
(1972) referred to these coefficients as “sheath” 
coefficients to designate the fact that they represent a 
collection of causes. 
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Figure 18.  Results obtained for Model H, showing standardized values for path coefficients and the error variances 
of latent endogenous variables. Correlations among xs and errors for ys are not shown for simplicity. Nonsignificant 
effects of macrohabitat types were dropped from the final model, which possessed a chi-square of 50.42 with 39 
degrees of freedom and a p of 0.104 (see caption for fig. 15 for abbreviations). 
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Figure 19.  Results obtained for Model G, showing standardized values for path coefficients and the error variances 
of latent endogenous variables. Correlations among xs and errors for ys are not shown for simplicity. Nonsignificant 
effects of macrohabitat types were dropped from the final model, which possessed a chi-square of 50.42 with 39 
degrees of freedom and a p of 0.104, precisely as for Model H (see caption for fig. 15 for abbreviations). 
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Figure 20.  Results obtained for Model F, showing standardized values for path coefficients and the error variances 
of latent endogenous variables. Correlations among xs and errors for ys are not shown for simplicity. Chi-square for 
this model was 30.03 with 24 degrees of freedom and a p of 0.1837 (see caption for fig. 15 for abbreviations). 
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The most conspicuous differences between 
Models H and G reside with the paths from causes to 
composites. For example, in Model H, the effects of 
Herbaceous and Litter on Diversity are represented 
by two path coefficients (0.50 and 0.37), while in 
Model G, the same effects are represented by three 
paths, two from Herbaceous and Litter to 
Microhabitat (1.18 and 0.87) and one 
fromMicrohabitat to Diversity (0.42). Upon first 
examination, the paths from Herbaceous and Litter to 
Microhabitat appear unusually inflated, particularly 
since Herbaceous and Litter are only modestly 
correlated (-0.30). The equivalency of relationships 
in Models H and G can be made clear by realizing 
that the total effects of Herbaceous and Litter on 
Diversity are simply compound paths in Model G 
(e.g., the effect of •4 on •7 = 1.18 times 0.42 = 0.50). 
The same holds true for all effects involving 
composites (e.g., the effects of x1 and x3 on •5).  

Results for Model F 

Model F, as described above, is a more general 
statement than Model G and presumes that a single 
composite is sufficient to represent the effects of 
Macrohabitat types on •2 , •3, and •5 . Results from 
maximum likelihood estimation of Model F included 
a chi-square of model fit of 66.12 with 38 degrees of 
freedom and an associated p-value of 0.0031, 
indicating poor fit. It was found that when estimated 
by using a single composite for Macrohabitat effects, 
substantial residual correlations between individual 
macrohabitat types and the indicators for •2 , •3, and 
•5 were not resolved. These results suggested that a 
single composite representing the effects of 
macrohabitat types on Herbaceous, Litter, and 
Diversity was inconsistent with the data. However, 
neither impoundment or swale indicators contributed 
significantly to the composite in this case; therefore, 
it was possible to simplify the model by dropping 
these indicators from the model. With these 
indicators deleted, model fit improved to 30.03 with 
24 degrees of freedom and a p-value of 0.1837, 
indicating acceptable fit. The results presented in 
figure 20 are based on these results.  

The version of Model F presented in figure 20, 
while representing a model that fits the data, fails to 
explain significant variation in either •2 or •3. We 
might choose to select this model to represent the 
direct and indirect effects of Macrohabitat because it 
addresses the central question of interest in 
Lichtenberg and others' (2006) study. While it 
succeeds at that more narrow objective, Model F fails 
to provide an explanation for macrohabitat effects on 
both diversity and microhabitat. The clear reason for 

that failure is that macrohabitat effects on 
microhabitat conditions are quite different from those 
on diversity, and that a single composite would not 
be able to represent both adequately. 

A Consideration of Model E  
Our most abstract model, Model E, represents 

direct effects of Macrohabitat on Microhabitat rather 
than on the dimensions of Microhabitat (Herbaceous 
and Litter). We found that a proper estimation of this 
model using a simultaneous solution procedure could 
not be achieved. The fundamental difficulty is that a 
zero error variance is specified for Microhabitat in 
order to permit it to represent the effects of 
Herbaceous and Litter on Diversity. It is not possible 
to estimate values for Microhabitat, a composite, 
based on the effects of Macrohabitat when the latter 
is also a composite. Thus, with Microhabitat 
represented as a composite with zero error variance, 
Model E is unresolvable without resorting to the 
derivation of a composite index for Microhabitat 
(such an approach would require a piecewise solution 
procedure, which we do not prefer). This condition 
serves as an additional argument in favor of modeling 
approaches in which exogenous influences are 
measured against the individual dimensions of 
endogenous multidimensional constructs (e.g., 
Models G and F) rather than the composite of their 
combined effects (in this case, on Diversity). With 
such an approach, effects on the endogenous 
composite can be estimated by using compound 
paths.  
 In conclusion, the principles presented by Grace 
and Bollen (in press) can be extended to models that 
contain endogenous composites. Some additional 
complexities arise with regard to model structure. In 
particular, the effects of composites representing 
exogenous indicators on composites representing 
endogenous indicators will typically need to be 
viewed as being indirect, through effects on the 
endogenous indicators themselves. This requirement 
poses no real problems for the inclusion of 
composites in such models, and our analysis is meant 
primarily to make clear the logic whereby effects in 
such models are considered.  

Conclusions and 
Recommendations 

Ecological theories often deal with theoretical 
concepts that are heterogeneous. In fact, it can be 
stated that one of the major factors that limit our 
ability to generalize in ecology is that we seek to 
generalize across variable entities of interest, such as 
communities and ecosystems (Grace, 2006). 
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Composites have, we believe, great potential to 
facilitate our ability to create models that are 
empirically meaningful and also of theoretical 
relevance. Without composites, models that consider 
substantial complexity and/or seek to address 
relations among a large number of variables will have 
the tendency to be highly specific, possessing a 
separate set of effects from each of a suite of 
intercorrelated indicators. Such specificity will limit 
the utility of SEM for effectively addressing the 
general questions often asked by ecologists. 
Composites represent something of a compromise, 
but one that often matches the characteristics of our 
theoretical constructs reasonably well. In the 
examples in this paper, using composites allows us to 
emphasize the interpretation of only 4 pathways from 
our two main predictor constructs instead of the 10 
pathways that would require emphasis without the 
use of composites. 

It should be pointed out that some have argued 
that because composites have data-specific properties 
defined by the relationships between predictors and 
responses, their meaning is vague, their effects less 
general, and they should be avoided (see discussion 
in Edwards 2001). Others, ourselves included, feel 
that the benefits associated with using composites 
outweigh their limitations. To some degree, the 
differences in opinion between these two 
perspectives may depend on the context and the 
emphasis of the investigator relative to the elements 
in figure 1. For those who wish to maximize their 
ability to relate statistical findings to some general 
theory, composites may provide a very useful device 
(e.g., Laughlin and Grace, 2006). For other 
investigators, who either possess theories that make 
very specific predictions or who do not wish to 
generalize far from the data, composites may be less 
valuable.   

It should be clear from the examples considered 
in this paper that the standard latent variable model is 
not always adequate for representing constructs and 
their interrelations. A consideration of composite 
variables contributes balance to the modeling process 
by providing options and encouraging a thorough 
evaluation of constructs and the measures at hand. 
While the need for composite variable specification 
has been pointed out several times (Heise, 1972; 
Bollen and Lennox, 1991; MacCallum and Brown, 
1993), the inclusion of composites in SEMs remains 
rare, while the misspecification of models using only 
L M blocks is common (Jarvis and others, 2003).  

At present, much of the literature on composite 
variables is based on the premise that composites 
should have two or more effects on other variables 
(outward directed paths) and that composites with 
single effects should not be included in models 

(MacCallum and Browne, 1993; Edwards, 2001; 
Jarvis and others, 2003; Williams and others, 2003). 
This recommendation has been offered as a 
necessary, though insufficient, requirement for the 
identification of composite error variances. In our 
first example, we found such a model (Model C) to 
be appropriate and satisfactory; in many cases models 
of this sort will not be adequate, and those with single 
effects (e.g., Model E) will be required. We argue 
that (1) including composites that have only single 
outward directed paths can be quite valuable, even 
though the covariances for a set of data can be 
represented without them, and (2) confining the use 
of composites to cases where there are multiple 
outward directed pathways is ill advised because it 
can lead the researcher into developing and testing 
models that fail to match the relations in the data. 

A key factor that has limited the use of 
composites has been the aforementioned problem of 
parameter identification for models with single 
effects (as well as some models with multiple 
effects). In this paper, we show that this problem can 
be resolved by reference to a partially reduced form 
model (of the type represented by Model C) in which 
specific effects can be evaluated, in conjunction with 
the specification of a scale for the composite. Further, 
we recommend that, for models that incorporate 
composites, reduced form models such as Model C 
and single-effect models such as Model D should be 
routinely examined as part of the evaluation process. 
When this approach is taken, a more complete 
consideration of construct representation can be 
achieved. 

As illustrated through our considerations of 
Example 2, representing endogenous constructs by 
using composites poses additional theoretical and 
practical issues. Models of the most general type, 
which posit direct effects of exogenous variables on 
endogenous composites, while of interest, may be 
difficult to solve and also to interpret. Models in 
which effects on endogenous constructs are modeled 
through influences on their dimensions prove to be 
more tractable, as well as more generally 
interpretable. Again, as a general strategy, comparing 
results with those from models with fewer restrictions 
contributes to the evaluation process.  

Modern SEM using latent variables has largely 
developed through applications to the social and 
economic sciences, though it is now being widely 
used in a broad range of disciplines. Part of the 
emphasis on common factor-type models (multi-
indicator, latent variable models) certainly comes 
from the availability of redundant measures, such as 
batteries of questionnaire items or exam questions 
that can be used to estimate underlying causes. Even 
in these disciplines, it seems that data and constructs 
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are such that composites could be widely used to 
represent relationships more properly. In the natural 
sciences, redundant measures are less common, a fact 
that has contributed to an emphasis on path analysis 
using only observed variables and encouraged little 
use of latent variables. We expect that multi-indicator 
latent variables of the L M block type will find wide 
usage in the natural sciences over time. However, we 
anticipate that a significant need will develop for 
considerations of composite variables to represent 
collections of effects. Composites, when used with 
care, provide a useful way of summarizing groups of 
effects that match our theories about construct 
relations.  
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